The Rabin-Monier theorem for Lucas pseudoprimes
نویسنده
چکیده
We give bounds on the number of pairs (P,Q) with 0 ≤ P,Q < n such that a composite number n is a strong Lucas pseudoprime with respect to the parameters (P,Q).
منابع مشابه
Nonexistence of Even Fibonacci Pseudoprimes of The
With regard to this problem, Di Porto and Filipponi, in [4], conjectured that there are no even-Fibonacci pseudoprimes of the 1 kind, providing some constraints are placed on their existence, and Somer, in [12], extends these constraints by stating some very interesting theorems. Moreover, in [1], a solution has been found for a similar problem, that is, for the sequence {Vn(2,1)}, defined by F...
متن کاملThe Pseudoprimes to 25 • 109
The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Carmichael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several...
متن کاملFrobenius pseudoprimes
The proliferation of probable prime tests in recent years has produced a plethora of definitions with the word “pseudoprime” in them. Examples include pseudoprimes, Euler pseudoprimes, strong pseudoprimes, Lucas pseudoprimes, strong Lucas pseudoprimes, extra strong Lucas pseudoprimes and Perrin pseudoprimes. Though these tests represent a wealth of ideas, they exist as a hodge-podge of definiti...
متن کاملSome new kinds of pseudoprimes
We define some new kinds of pseudoprimes to several bases, which generalize strong pseudoprimes. We call them Sylow p-pseudoprimes and elementary Abelian p-pseudoprimes. It turns out that every n < 1012, which is a strong pseudoprime to bases 2, 3 and 5, is not a Sylow p-pseudoprime to two of these bases for an appropriate prime p|n− 1. We also give examples of strong pseudoprimes to many bases...
متن کاملCipolla Pseudoprimes
We consider the pseudoprimes that M. Cipolla constructed. We call such pseudoprimes Cipolla pseudoprimes. In this paper we find infinitely many Lucas and Lehmer pseudoprimes that are analogous to Cipolla pseudoprimes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 1997